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Introduction - Prophet Inequalities

I Gambler sees a sequence of n non-negative values V1,V2 · · ·Vn

I Each value Vi is drawn independently from a distribution Di
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Introduction - Prophet Inequalities

I Gambler sees a sequence of n non-negative values V1,V2 · · ·Vn

I Each value Vi is drawn independently from a distribution Di

I Must accept or reject a value irrevocably on seeing it

E.Arunachaleswaran Prophet Inequalities with Limited Information 4



Introduction - Prophet Inequalities

I Objective of gambler is to maximize expected reward
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Introduction - Prophet Inequalities

I Objective of gambler is to maximize expected reward

I Can find an optimal strategy using backward induction, working
backward from the last round

I Krengel et al.(1978) - Strategy that guarantees 1/2 of the expected
optimum reward

I Samuel-Cahn (1984) - Same guarantee, but using a simple threshold
strategy
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Introduction - Prophet Inequalities

I Objective of gambler is to maximize expected reward

I Can find an optimal strategy using backward induction, working
backward from the last round

I Krengel et al. (1978) - Strategy that guarantees 1/2 of the expected
optimum reward

I Samuel-Cahn (1984) - Same guarantee, but using a simple threshold
strategy

I All these strategies require non trivial knowledge of the
distributions
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Prophet Inequalities with Limited Information

I Can the gambler achieve similar guarantees for the competitive ratio
without knowing everything about the distribution?
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Prophet Inequalities with Limited Information

I Can the gambler achieve similar guarantees for the competitive ratio
without knowing everything about the distribution?

I In particular, is it sufficient to have a few samples, maybe even just
one sample, from each distribution?
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Prophet Inequalities with Limited Information

I Can the gambler achieve similar guarantees for the competitive ratio
without knowing everything about the distribution?

I In particular, is it sufficient to have a few samples, maybe even just
one sample, from each distribution?

I Short Answer : Yes
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Prophet Inequalities with Limited Information

Some Basics First
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Prophet Inequalities Problem Statement

I Given an environment I = {[n],J } (for example J = matchings in
a given graph)

I Observe sequence V1,V2 · · ·Vn where Vi ∼ Di

I Accept or reject elements irrevocably, maintain an accepted set
A ∈ J .
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Prophet Inequalities Generalized Problem Statement

I Given an environment I = {[n],J } (for example J = matchings in
a given graph)

I Observe sequence V1,V2 · · ·Vn where Vi ∼ Di

I Accept or reject elements irrevocably, maintain an accepted set
A ∈ J .

I Competitive ratio α if expected reward is α.EV∼D [OPT(V )]

(comparison to the reward picked by an offline player - called the prophet)
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Prophet Inequalities Generalized Problem Statement

I Given an environment I = {[n],J } (for example J = matchings in
a given graph)

I Observe sequence V1,V2 · · ·Vn where Vi ∼ Di

I Accept or reject elements irrevocably, maintain an accepted set
A ∈ J .

I Competitive ratio α if expected reward is α.EV∼D [OPT(V )]
(comparison to the reward picked by an offline player - called the
prophet)

I Gambler allowed to use randomized algorithms

E.Arunachaleswaran Prophet Inequalities with Limited Information 18



Prophet Inequalities Generalized Problem Statement

I Given an environment I = {[n],J } (for example J = matchings in
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Prophet Inequalities Generalized Problem Statement

I Given an environment I = {[n],J } (for example J = matchings in
a given graph)

I Observe sequence V1,V2 · · ·Vn where Vi ∼ Di

I Accept or reject elements irrevocably, maintain an accepted set
A ∈ J .

I Competitive ratio α if expected reward is α.EV∼D [OPT(V )]
(comparison to the reward picked by an offline player - called the
prophet)

I Prophet inequalities for various settings - matchings, matroids,
general set systems - in the full information setting

I Many results have been extended to the limited information setting
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Motivation - Online Mechanism Design Problems

I Suppose we wish to sell a single good to a pool of buyers arriving in
some sequence
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Motivation -Online Mechanism Design

I Suppose we wish to sell a single good to a pool of buyers arriving in
some sequence

I Each buyer has a private value Vi , drawn from some distribution Di

I Must decide in an online manner whether to sell to the newly arrived
buyer
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Motivation -Online Mechanism Design

I Suppose we wish to sell a single good to a pool of buyers arriving in
some sequence

I Each buyer has a private value Vi , drawn from some distribution Di

I Must decide in an online manner whether to sell to the newly arrived
buyer

I Natural connection between prophet inequalities and optimal
mechanism design
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An Application -Online Mechanism Design

I Suppose we wish to sell a single good to a pool of buyers arriving in
some sequence

I Each buyer has a private value Vi , drawn from some distribution Di

I Must decide in an online manner whether to sell to the newly arrived
buyer

I Natural connection between prophet inequalities and optimal
mechanism design

I Results translate in both directions
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Motivation -Online Mechanism Design

I Suppose we wish to sell a single good to a pool of buyers arriving in
some sequence

I Each buyer has a private value Vi , drawn from some distribution Di

I Must decide in an online manner whether to sell to the newly arrived
buyer

I Natural connection between prophet inequalities and optimal
mechanism design

I Results translate in both directions

I Combinatorial allocation problems motivated the generalized prophet
inequalities problem
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The Single Choice Problem

I Given samples {S1,S2 · · · Sn}, where Si is drawn independently from
Di , how well can the gambler do ?
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Single Choice Problem

I Given samples {S1,S2 · · · Sn}, where Si is drawn independently from
Di , how well can the gambler do ?

I Gambler cannot do better than competitive ratio 1/2 , even with full
knowledge of the distributions
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Single Choice Problem

I Given samples {S1,S2 · · · Sn}, where Si is drawn independently from
Di , how well can the gambler do ?

I Gambler cannot do better than competitive ratio 1/2 , even with full
knowledge of the distributions

Theorem (Rubinstein et al [RWW20])

There is a 1/2-competitive threshold based algorithm for the single
sample single choice prophet inequality problem.
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Upper Bounds - Single Choice Problem

I Consider the following two distributions:

I
V1 = 1 w.p. 1

I

V2 =

{
1
ε w.p. ε

0 w.p. 1− ε
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Upper Bounds - Single Choice Problem

I Consider the following two distributions:

I
V1 = 1 w.p. 1

I

V2 =

{
1
ε w.p. ε

0 w.p. 1− ε

I Expected reward of the prophet ( optimal reward) is 2− ε
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Upper Bounds - Single Choice Problem

I Consider the following two distributions:

I
V1 = 1 w.p. 1

I

V2 =

{
1
ε w.p. ε

0 w.p. 1− ε

I Two possible strategies for the gambler - based on whether or not to
accept the first value
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Upper Bounds - Single Choice Problem

I Consider the following two distributions:

I
V1 = 1 w.p. 1

I

V2 =

{
1
ε w.p. ε

0 w.p. 1− ε

I Two possible strategies for the gambler - based on whether or not to
accept the first value

I Both strategies have expected reward 1
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1/2-Competitive Strategy

Theorem (Rubinstein et al [RWW20])

There is a 1/2-competitive threshold based algorithm for the single
sample single choice prophet inequality problem.

I Algorithm: Set threshold τ = maxi Si , accept any value that is at
least τ .
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1/2-Competitive Strategy : Proof
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1/2-Competitive Strategy : Proof

I Key Observation 1: The set {Vi ,Si} is a set of two independent
draws {Yi ,Zi} from the distribution Di . WLOG, let Yi > Zi .
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1/2-Competitive Strategy : Proof

I Key Observation 1: The set {Vi ,Si} is a set of two independent
draws {Yi ,Zi} from the distribution Di . WLOG, let Yi > Zi .

I Key Observation 2: Based on an independent, unbiased coin toss,
either Vi = Yi , Si = Zi or vice-versa
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1/2-Competitive Strategy : Proof

I Fix any draw of samples and values {Yi ,Zi}i∈[n]
I We will show a competitive ratio of 1/2 for this fixed draw
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1/2-Competitive Strategy : Proof

I Fix any draw of samples and values {Yi ,Zi}i∈[n]
I Let these quantities be X1 > X2 · · · > X2n
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1/2-Competitive Strategy : Proof

I Fix any draw of samples and values {Yi ,Zi}i∈[n]
I Let these quantities be X1 > X2 · · · > X2n

I Equivalently, they are Yi1 > Yi2 · · ·Yil > Zik > .... where
k ∈ {1, 2, · · · l} and {i1, i2, · · · il} are all distinct
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1/2-Competitive Strategy : Proof

I Fix any draw of samples and values {Yi ,Zi}i∈[n]
I Let these quantities be X1 > X2 · · · > X2n

I Equivalently, they are Yi1 > Yi2 · · ·Yil > Zik > .... where
k ∈ {1, 2, · · · l} and {i1, i2, · · · il} are all distinct

I Observe that the prophet picks the largest value.
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1/2-Competitive Strategy : Proof

I Fix any draw of samples and values {Yi ,Zi}i∈[n]
I Let these quantities be X1 > X2 · · ·X2n

I Equivalently, they are Yi1 > Yi2 · · ·Yil > Zik > .... where
k ∈ {1, 2, · · · l} and {i1, i2, · · · il} are all distinct

I What is the probability that the prophet gets X1 ?
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1/2-Competitive Strategy : Proof

I Fix any draw of samples and values {Yi ,Zi}i∈[n]
I Let these quantities be X1 > X2 · · ·X2n

I Equivalently, they are Yi1 > Yi2 · · ·Yil > Zik > .... where
k ∈ {1, 2, · · · l} and {i1, i2, · · · il} are all distinct

I What is the probability that the prophet gets X1 ?

I With probability 1/2 (i.e., Yi1 is set as the i1-th value)
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1/2-Competitive Strategy : Proof

I Fix any draw of samples and values {Yi ,Zi}i∈[n]
I Let these quantities be X1 > X2 · · ·X2n

I Equivalently, they are Yi1 > Yi2 · · ·Yil > Zik > .... where
k ∈ {1, 2, · · · l} and {i1, i2, · · · il} are all distinct

I Observe that the prophet picks the largest value.

I The gambler gets at least the smallest value that is larger than the
largest sample.
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1/2-Competitive Strategy : Proof

I Fix any draw of samples and values {Yi ,Zi}i∈[n]
I Let these quantities be X1 > X2 · · ·X2n

I Equivalently, they are Yi1 > Yi2 · · ·Yil > Zik > .... where
k ∈ {1, 2, · · · l} and {i1, i2, · · · il} are all distinct

I What is the probability that the gambler gets X1 ?
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1/2-Competitive Strategy : Proof

I Fix any draw of samples and values {Yi ,Zi}i∈[n]
I Let these quantities be X1 > X2 · · ·X2n

I Equivalently, they are Yi1 > Yi2 · · ·Yil > Zik > .... where
k ∈ {1, 2, · · · l} and {i1, i2, · · · il} are all distinct

I What is the probability that the gambler gets X1 ?

I With probability 1/4 (i.e., Yi1 is set as the i1-th value and Yi2 is set
as the i2-th value)
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1/2-Competitive Strategy : Proof

I Fix any draw of samples and values {Yi ,Zi}i∈[n]
I Let these quantities be X1 > X2 · · ·X2n

I Equivalently, they are Yi1 > Yi2 · · ·Yil > Zik > .... where
k ∈ {1, 2, · · · l} and {i1, i2, · · · il} are all distinct

I More generally, what is the probability that the prophet (gambler)
gets Xj , for j < l ?

I With probability 1/2j (1/2j+1)
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1/2-Competitive Strategy : Proof

I Fix any draw of samples and values {Yi ,Zi}i∈[n]
I Let these quantities be X1 > X2 · · ·X2n

I Equivalently, they are Yi1 > Yi2 · · ·Yil > Zik > .... where
k ∈ {1, 2, · · · l} and {i1, i2, · · · il} are all distinct

I Note that the first sample as well as first value must appear by Xl+1
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1/2-Competitive Strategy : Proof

I Fix any draw of samples and values {Yi ,Zi}i∈[n]
I Let these quantities be X1 > X2 · · ·X2n

I Equivalently, they are Yi1 > Yi2 · · ·Yil > Zik > .... where
k ∈ {1, 2, · · · l} and {i1, i2, · · · il} are all distinct

I

E[Prophet’s Reward] =

(
l∑

i=1

Xi

2i

)
+

Xl+1

2l

I

E[Gambler’s Reward] ≥

(
l∑

i=1

Xi

2i+1

)
+

Xl

2l+1
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Summary - Single Choice Problem

I Given samples {S1,S2 · · · Sn}, where Si is drawn independently from
Di , how well can the gambler do ?

I Gambler cannot do better than competitive ratio 1/2 , even with full
knowledge of the distributions

I Rubinstein et al. : Simple Threshold based strategy is
1/2-Competitive

I Simple algorithm that matches the full information competitive ratio
as well as the upper bound, all with a single sample

I This algorithm is a special case of a more general algorithm by Azar

et al., which achieves a competitive ratio of 1− O
(

1√
k

)
for the

k-choice problem.
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The k Choice Problem

I Given samples {S1,S2 · · · Sn}, where Si is drawn independently from
Di , how well can the gambler do ?

I Azar et al. (2013), showed a 1− O
(

1√
k

)
-competitive algorithms

I Asymptotically comparable to the upper bound

I Uses the largest k − 2
√
k samples to set k thresholds
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The k Choice Problem

I Azar et al. (2013), showed a 1− O
(

1√
k

)
-competitive algorithms

I Uses the largest k − 2
√
k samples to set k thresholds

I Fix any draw of samples and values {Yi ,Zi}i∈[n]
I Let these quantities be X1 > X2 · · ·X2n

I Equivalently, they are Yi1 > Yi2 · · ·Yil > Zik > .... where
k ∈ {1, 2, · · · l} and {i1, i2, · · · il} are all distinct

I What is the probability that the prophet (gambler) gets Xj , for j < l
?
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The k Choice Problem

I Azar et al. (2013), showed a 1− O
(

1√
k

)
-competitive algorithms

I Uses the largest k − 2
√
k samples to set k thresholds

I Fix any draw of samples and values {Yi ,Zi}i∈[n]
I Let these quantities be X1 > X2 · · ·X2n

I Equivalently, they are Yi1 > Yi2 · · ·Yil > Zik > .... where
k ∈ {1, 2, · · · l} and {i1, i2, · · · il} are all distinct

I What is the probability that the prophet (gambler) gets Xj , for j < l
?

I Bounding the height of a negatively correlated random walks used to
compare probabilities
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The Secretary Problem

I There are n values V1,V2 · · ·Vn which are presented in uniformly
random order - Vi1 ,Vi2 , · · ·Vin

I Once again, must choose irrevocably whether or not to accept the
j-th value Vij

I Objective is to maximize the probability of selecting the maximum
value
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The Secretary Problem

I There are n values V1,V2 · · ·Vn which are presented in uniformly
random order - Vi1 ,Vi2 , · · ·Vin

I Once again, must choose irrevocably whether or not to accept the
j-th value Vij

I Objective is to maximize the probability of selecting the maximum
value

Theorem
There is an algorithm that accepts the maximum value with probability
1/e for the single choice secretary problem. Additionally, the probability
1/e is optimal.
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The Secretary Problem

I There are n values V1,V2 · · ·Vn which are presented in uniformly
random order - Vi1 ,Vi2 , · · ·Vin

I Once again, must choose irrevocably whether or not to accept the
j-th value Vij

I Objective is to maximize the probability of selecting the maximum
value

Theorem
There is an algorithm that accepts the maximum value with probability
1/e for the single choice secretary problem. Additionally, the probability
1/e is optimal.

I Algorithm : Observe the first 1/e fraction of values and note
down the maximum, accept the first value outside this set exceeding
the noted maximum
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The Secretary Problem

I There are n values V1,V2 · · ·Vn which are presented in uniformly
random order - Vi1 ,Vi2 , · · ·Vin

I Once again, must choose irrevocably whether or not to accept the
j-th value Vij

I Objective is to maximize the probability of selecting the maximum
value

I Just like prophet inequalities, the problem can be generalized to
selecting more than one element

I Constant (or better) probability of selecting the optimal set for
multi-choice problems - eg: matchings, k-Choice, matroids etc.
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The Secretary Problem

I There are n values V1,V2 · · ·Vn which are presented in uniformly
random order - Vi1 ,Vi2 , · · ·Vin

I Once again, must choose irrevocably whether or not to accept the
j-th value Vij

I Objective is to maximize the probability of selecting the maximum
value

I Just like prophet inequalities, the problem can be generalized to
selecting more than one element

I Constant (or better) probability of selecting the optimal set for
multi-choice problems - eg: matchings, k-Choice, matroids etc.

I Are prophets easier than secretaries?
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Reducing Prophets to Secretaries

Theorem (Azar et al. [AKW14])

Any α-competitive order-oblivious algorithm AS for the secretary problem
in environment I = {[n],J } yields a α-competitive algorithm AP for the
corresponding single sample prophet inequality problem in the same
environment.

E.Arunachaleswaran Prophet Inequalities with Limited Information 66



Order-Oblivious Algorithms

I AS picks a threshold index k before starting the sequence
(potentially using random bits) and only observes the first k values
A = {vi1 , vi2 · · · vik} in the sequence.
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Order-Oblivious Algorithms

I AS picks a threshold index k before starting the sequence
(potentially using random bits) and only observes the first k values
A = {vi1 , vi2 · · · vik} in the sequence.

I AS assumes only that the set A is a uniformly random subset of size
k of the set {vi}i∈[n] of n values, while proving the competitive ratio.
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Order-Oblivious Algorithms- Example

I Single choice problem

I Select k = Binomial(n, 1/2) and set threshold as max of first k
values, accept first value after k values that beats this threshold
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Order-Oblivious Algorithms- Example

I Single choice problem

I Select k = Binomial(n, 1/2) and set threshold as max of first k
values, accept first value after k values that beats this threshold

I Claim : This algorithm picks the maximum value with probability
1/4 (under order-oblivious analysis)
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Order-Oblivious Algorithms- Example

I Single choice problem

I Select k = Binomial(n, 1/2) and set threshold as max of first k
values, accept first value after k values that beats this threshold

I Claim : This algorithm picks the maximum value with probability
1/4 (under order-oblivious analysis)

I Consider the following construction of the first k values - each value
is included independently with probability 1/2
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Order-Oblivious Algorithms- Example

I Single choice problem

I Select k = Binomial(n, 1/2) and set threshold as max of first k
values, accept first value after k values that beats this threshold

I Claim : This algorithm picks the maximum value with probability
1/4 (under order-oblivious analysis)

I Consider the following construction of the first k values - each value
is included independently with probability 1/2

I Thus, with probability 1/4, the second largest element is in the first
k values and the largest value is in the second part.
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Reducing Prophets to Secretaries

Theorem
Any α-competitive order-oblivious algorithm AS for the secretary problem
in environment I = {[n],J } yields a α-competitive algorithm AP for the
corresponding single sample prophet inequality problem in the same
environment.
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Proof
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Proof
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Proof
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Proof

I We construct an instance of the secretary problem -
X = X1,X2, · · ·Xn
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Proof

I We construct an instance of the secretary problem -
X = X1,X2, · · ·Xn

I Select k in the same manner as AS . Select a uniformly random
subset K = {i1, i2 · · · ik} of [n] of size k - the first k elements of X
are the samples Si1 ,Si2 , · · · Sik .
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Proof

I We construct an instance of the secretary problem -
X = X1,X2, · · ·Xn

I Select k in the same manner as AS . Select a uniformly random
subset K = {i1, i2 · · · ik} of [n] of size k - the first k elements of X
are the samples Si1 ,Si2 , · · · Sik .

I The rest of the sequence X is constructed in an online manner -
observe each value Vi , if i ∈ K , ignore it.
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Proof

I We construct an instance of the secretary problem -
X = X1,X2, · · ·Xn

I Select k in the same manner as AS . Select a uniformly random
subset K = {i1, i2 · · · ik} of [n] of size k - the first k elements of X
are the samples Si1 ,Si2 , · · · Sik .

I The rest of the sequence X is constructed in an online manner -
observe each value Vi , if i ∈ K , ignore it.

I If i /∈ K , add Vi as the next element of X

E.Arunachaleswaran Prophet Inequalities with Limited Information 80



Proof

I We construct an instance of the secretary problem -
X = X1,X2, · · ·Xn

I Select k in the same manner as AS . Select a uniformly random
subset K = {i1, i2 · · · ik} of [n] of size k - the first k elements of X
are the samples Si1 ,Si2 , · · · Sik .

I The rest of the sequence X is constructed in an online manner -
observe each value Vi , if i ∈ K , ignore it.

I If i /∈ K , add Vi as the next element of X
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Proof

I We construct an instance of the secretary problem -
X = X1,X2, · · ·Xn

I Select k in the same manner as AS . Select a uniformly random
subset K = {i1, i2 · · · ik} of [n] of size k - the first k elements of X
are the samples Si1 ,Si2 , · · · Sik .

I The rest of the sequence X is constructed in an online manner -
observe each value Vi , if i ∈ K , ignore it.

I If i /∈ K , add Vi as the next element of X

I Run algorithm AS on X
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Proof

I Observation 1: Our algorithm picks a feasible subset of values
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Proof

E.Arunachaleswaran Prophet Inequalities with Limited Information 84



Proof

I Observation 1: Our algorithm picks a feasible subset of values

I Observation 2: The expected value of the maximum feasible subset
of X is equal to the expected value of the maximum subset of V
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Proof
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Proof

I Observation 1: Our algorithm picks a feasible subset of values

I Observation 2: The expected value of the maximum feasible subset
of X is equal to the expected. value of the maximum subset of V

I Thus the guarantee of As translates into a prophet inequality
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Corollaries

I O(log log(rank))-competitive factor algorithm for matroid
constraints

I 1/8-competitive factor algorithm for graphic matroids

I 1
12
√
3

-competitive factor algorithm for laminar matroids

I 1/16-competitive factor algorithm for transversal matroids

I Note: All the above are single sample prophet inequality problems
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IID Prophet Inequalities

I Consider the single choice problem, but with all distributions
identical
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IID Prophet Inequalities

I Consider the single choice problem, but with all distributions
identical

I If the gambler knows this distribution, Correa et al.(2017) showed an
algorithm with 0.745-competitive ratio
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IID Prophet Inequalities

I Consider the single choice problem, but with all distributions
identical

I If the gambler knows this distribution, Correa et al. showed an
algorithm with 0.745-competitive ratio

I This result is optimal, due to an impossibility result of Hill and
Kertz(1982)
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IID Prophet Inequalities

I Consider the single choice problem, but with all distributions
identical

I If the gambler knows this distribution, Correa et al. showed an
algorithm with 0.745-competitive ratio

I This result is optimal, due to an impossibility result of Hill and Kertz

I What if the distribution is not known to the gambler?
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Unknown IID Prophet Inequalities

I 1/e- Competitive Algorithm, based on the secretary problem

Theorem
There exists a 1/e-competitive algorithm for the unknown IID prophet
problem.
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Unknown IID Prophet Inequalities

I 1/e- Competitive Algorithm, based on the secretary problem

I 1/e upper bound, based on the construction of a pathological
distribution for any fixed algorithm

Theorem (Correa et al [CDFS19])

No algorithm can do better than 1/e competitive ratio for the unknown
IID prophet inequality problem.
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Unknown IID Prophet Inequalities

I 1/e- Competitive Algorithm, based on the secretary problem

I 1/e upper bound, based on the construction of a pathological
distribution for any fixed algorithm

I Improves to 1− 1/e ≈ 0.632 with n − 1 samples
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Unknown IID Prophet Inequalities - Summary

I 1/e- Competitive Algorithm, based on the secretary problem

I 1/e upper bound, based on the construction of a pathological
distribution for any fixed algorithm

I Improves to 1− 1/e ≈ 0.632 with n − 1 samples

I Improves all the way to 0.745− ε with Oε(n) samples
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Unknown IID Prophet Inequalities

Theorem (Correa et al [CDFS19])

No algorithm can do better than 1/e competitive ratio for the unknown
IID prophet inequality problem.

I Key Idea : Use the fact that 1/e is the optimal probability of
selecting the max element in the secretary problem
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Unknown IID Prophet Inequalities

Theorem (Correa et al [CDFS19])

No algorithm can do better than 1/e competitive ratio for the unknown
IID prophet inequality problem.

I Key Idea : Use the fact that 1/e is the optimal probability of
selecting the max element in the secretary problem

I Need to restrict the class of algorithms to secretary-like algorithms
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Unknown IID Prophet Inequalities

Theorem (Correa et al [CDFS19])

No algorithm can do better than 1/e competitive ratio for the unknown
IID prophet inequality problem.

I For a fixed algorithm A, design distribution F such that A only uses
ordinal information on F
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Unknown IID Prophet Inequalities

Theorem (Correa et al [CDFS19])

No algorithm can do better than 1/e competitive ratio for the unknown
IID prophet inequality problem.

I For a fixed algorithm A, design distribution F such that A only uses
ordinal information on F

I Set up the support of F so that the maximum element contributes a
1− o(1) fraction of the expected optimum
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Value Oblivious Algorithms

Lemma (Correa et al [CDFS19])

For any ε > 0, there exists an infinite subset S ⊂ N such that : for all
i ∈ [n], there exists pi ∈ [0, 1] such that for distinct v1, v2, · · · vi ∈ S,

Pr[A accepts vi |vi > max{v1, v2 · · · vi−1}] ∈ (pi − ε, pi + ε]
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Value Oblivious Algorithms

Lemma (Correa et al [CDFS19])

For any ε > 0, there exists an infinite subset S ⊂ N such that : for all
i ∈ [n], there exists pi ∈ [0, 1] such that for distinct v1, v2, · · · vi ∈ S,

Pr[A accepts vi |vi > max{v1, v2 · · · vi−1}] ∈ (pi − ε, pi + ε]

Proof.
For i = 1 :
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Value Oblivious Algorithms

Lemma (Correa et al [CDFS19])

For any ε > 0, there exists an infinite subset S ⊂ N such that : for all
i ∈ [n], there exists pi ∈ [0, 1] such that for distinct v1, v2, · · · vi ∈ S,

Pr[A accepts vi |vi > max{v1, v2 · · · vi−1}] ∈ (pi − ε, pi + ε]

Proof.
For i = 1 :
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Value Oblivious Algorithms

Lemma (Correa et al [CDFS19])

For any ε > 0, there exists an infinite subset S ⊂ N such that : for all
i ∈ [n], there exists pi ∈ [0, 1] such that for distinct v1, v2, · · · vi ∈ S,

Pr[A accepts vi |vi > max{v1, v2 · · · vi−1}] ∈ (pi − ε, pi + ε]

Proof.
For i = 1 :

At least one interval has an infinite number of points. Call these points
S1.
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Value Oblivious Algorithms

Lemma (Correa et al [CDFS19])

For any ε > 0, there exists an infinite subset S ⊂ N such that : for all
i ∈ [n], there exists pi ∈ [0, 1] such that for distinct v1, v2, · · · vi ∈ S,

Pr[A accepts vi |vi > max{v1, v2 · · · vi−1}] ∈ (pi − ε, pi + ε]

Proof.
For i = 2 : Consider the complete graph on the vertex set S1.
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Value Oblivious Algorithms

Lemma (Correa et al [CDFS19])

For any ε > 0, there exists an infinite subset S ⊂ N such that : for all
i ∈ [n], there exists pi ∈ [0, 1] such that for distinct v1, v2, · · · vi ∈ S,

Pr[A accepts vi |vi > max{v1, v2 · · · vi−1}] ∈ (pi − ε, pi + ε]

Proof.
For i = 2 : Consider the complete graph on the vertex set S1. Color the
edge (u,w) where u < w with the corresponding color.
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Value Oblivious Algorithms

Lemma (Correa et al [CDFS19])

For any ε > 0, there exists an infinite subset S ⊂ N such that : for all
i ∈ [n], there exists pi ∈ [0, 1] such that for distinct v1, v2, · · · vi ∈ S,

Pr[A accepts vi |vi > max{v1, v2 · · · vi−1}] ∈ (pi − ε, pi + ε]

Proof.
For i = 2 : Consider the complete graph on the vertex set S1. Color the
edge (u,w) where u < w with the corresponding color.
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Value Oblivious Algorithms

Lemma (Correa et al [CDFS19])

For any ε > 0, there exists an infinite subset S ⊂ N such that : for all
i ∈ [n], there exists pi ∈ [0, 1] such that for distinct v1, v2, · · · vi ∈ S,

Pr[A accepts vi |vi > max{v1, v2 · · · vi−1}] ∈ (pi − ε, pi + ε]

Proof.
For i = 2 : Consider the complete graph on the vertex set S1. Color the
edge (u,w) where u < w with the corresponding color.
We want a monochromatic infinite clique.
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Value Oblivious Algorithms

Theorem (Ramsay)

Let H be a d-uniform infinite complete hypergraph whose edges coloured
with c colours. Then, H must have a monochromatic d-uniform infinite
complete sub-hypergraph.
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Value Oblivious Algorithms

Lemma (Correa et al [CDFS19])

For any ε > 0, there exists an infinite subset S ⊂ N such that : for all
i ∈ [n], there exists pi ∈ [0, 1] such that for distinct v1, v2, · · · vi ∈ S,

Pr[A accepts vi |vi > max{v1, v2 · · · vi−1}] ∈ (pi − ε, pi + ε]

Proof.
For i = 2 : Consider the complete graph on the vertex set S1. Color the
edge (u,w) where u < w with the corresponding color.
Call the monochromatic infinite clique S2
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Value Oblivious Algorithms

Lemma (Correa et al [CDFS19])

For any ε > 0, there exists an infinite subset S ⊂ N such that : for all
i ∈ [n], there exists pi ∈ [0, 1] such that for distinct v1, v2, · · · vi ∈ S,

Pr[A accepts vi |vi > max{v1, v2 · · · vi−1}] ∈ (pi − ε, pi + ε]

Proof.
For general i : Consider the complete graph on the vertex set Si−1. Color
the edge (d1, d2, · · · di ) where di > {d1, d2, · · · dj} with the corresponding
color.
Let Si be an infinite monochromatic clique
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A 1/e Upper Bound

Theorem (Correa et al [CDFS19])

No algorithm can do better than 1/e competitive ratio for the unknown
IID prophet inequality problem.

I For a fixed algorithm A, design distribution F such that A only uses
ordinal information on F

I Set up the support of F so that the maximum element contributes a
1− o(1) fraction of the expected optimum

I Thus, A cannot do any better than 1/e for the distribution F
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Beating the 1/e Bound

I Corollary: Cannot do better than 1/e with o(n) samples
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Beating the 1/e Bound

I Corollary: Cannot do better than 1/e with o(n) samples

I Proof : Set aside the first o(1) fraction of values to be used as
samples in the (completely) unknown IID prophet problem
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Beating the 1/e Bound

I Corollary: Cannot do better than 1/e with o(n) samples

I Proof : Set aside the first o(1) fraction of values to be used as
samples in the (completely) unknown IID prophet problem

I Expected maximum of the remaining values is 1− o(1) times the
expected maximum of all the values
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Beating the 1/e Bound

I Corollary: Cannot do better than 1/e with o(n) samples

I How to use Ω(n) samples to improve competitive ratio?
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Beating the 1/e Bound

I Corollary: Cannot do better than 1/e with o(n) samples

I How to use Ω(n) samples to improve competitive ratio?

I Already know that n samples suffice for 1/2-competitive ratio. Can
we do better, given that the distributions are identical?
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Beating the 1/e Bound

I Corollary: Cannot do better than 1/e with o(n) samples

I How to use Ω(n) samples to improve competitive ratio?

I Approach 1 : Independently simulate the other n − 1 values using
samples
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A 1− 1/e-Competitive Algorithm

I First, a 1− 1/e-approx algorithm with n(n − 1) samples
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A 1− 1/e-Competitive Algorithm

I First, a 1− 1/e-approx algorithm with n(n − 1) samples

I For each i ∈ [n], use n − 1 fresh samples to set a threshold τi as
their maximum value. Accept Vi if Vi > τi
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A 1− 1/e-Competitive Algorithm

I First, a 1− 1/e-approx algorithm with n(n − 1) samples

I For each i ∈ [n], use n − 1 fresh samples to set a threshold τi as
their maximum value. Accept Vi if Vi > τi

I Key Idea 1: The events Vi > τi are independent
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A 1− 1/e-Competitive Algorithm

I First, a 1− 1/e-approx algorithm with n(n − 1) samples

I For each i ∈ [n], use n − 1 fresh samples to set a threshold τi as
their maximum value. Accept Vi if Vi > τi

I Key Idea 1: The events Vi > τi are independent

I On reaching the i-th value, probability of accepting it is 1/n
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A 1− 1/e-Competitive Algorithm

I First, a 1− 1/e-approx algorithm with n(n − 1) samples

I For each i ∈ [n], use n − 1 fresh samples to set a threshold τi as
their maximum value. Accept Vi if Vi > τi

I Key Idea 1: The events Vi > τi are independent

I On reaching the i-th value, probability of accepting it is 1/n

I Key Idea 2 : Conditioned upon accepting a value, its expected
value is E[Vmax]

I Consider the event that some value is accepted. This event happens

with probability
(

1−
(
1− 1

n

)n)
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A 1− 1/e-Competitive Algorithm

I First, a 1− 1/e-approx algorithm with n(n − 1) samples

I For each i ∈ [n], use n − 1 fresh samples to set a threshold τi as
their maximum value. Accept Vi if Vi > τi

I Key Idea 1: The events Vi > τi are independent

I On reaching the i-th value, probability of accepting it is 1/n

I Key Idea 2 : Conditioned upon accepting a value, its expected
value is E[Vmax]

I Consider the event that some value is accepted. This event happens

with probability
(

1−
(
1− 1

n

)n)
I Putting the pieces together , the expected reward is(

1−
(

1− 1

n

)n) n∑
i=1

1

n
.E[Vmax]
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A 1− 1/e-Competitive Algorithm

I First, a 1− 1/e-approx algorithm with n(n − 1) samples

I For each i ∈ [n], use n − 1 fresh samples to set a threshold τi as
their maximum value. Accept Vi if Vi > τi

I Putting the pieces together , the expected reward is(
1−

(
1− 1

n

)n) n∑
i=1

1

n
.E[Vmax] ≥

(
1− 1

e

)
E[Vmax]
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A 1− 1/e-Competitive Algorithm

I First, a 1− 1/e-approx algorithm with n(n − 1) samples

I For each i ∈ [n], use n − 1 fresh samples to set a threshold τi as
their maximum value. Accept Vi if Vi > τi

I Can achieve the same competitive ratio with n − 1 samples by
“recycling” rejected values as samples
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A 1− 1/e-Competitive Algorithm

I First, a 1− 1/e-approx algorithm with n(n − 1) samples

I For each i ∈ [n], use n − 1 fresh samples to set a threshold τi as
their maximum value. Accept Vi if Vi > τi

I Can achieve the same competitive ratio with n − 1 samples by
“recycling” rejected values as samples

I Maintain a set of n − 1 samples S

I Set threshold τi = maxS . If Vi is rejected, swap in Vi into S with a
uniformly random element
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A 1− 1/e-Competitive Algorithm

I First, a 1− 1/e-approx algorithm with n(n − 1) samples

I For each i ∈ [n], use n − 1 fresh samples to set a threshold τi as
their maximum value. Accept Vi if Vi > τi

I Can achieve the same competitive ratio with n − 1 samples by
“recycling” rejected values as samples

I Maintain a set of n − 1 samples S

I Set threshold τi = maxS . If Vi is rejected, swap in Vi into S with a
uniformly random element

I Claim : Conditioned on arriving at the i-th value, the distribution of
S is that of n − 1 “fresh” samples.
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Beating the 1/e Bound

I Corollary: Cannot do better than 1/e with o(n) samples

I How to use Ω(n) samples to improve competitive ratio?

I Approach 1 : Independently simulate the other n − 1 values using
samples
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Beating the 1/e Bound

I Corollary: Cannot do better than 1/e with o(n) samples

I How to use Ω(n) samples to improve competitive ratio?

I Approach 1 : Independently simulate the other n − 1 values using
samples

I Similar approach used by Azar et al. for bipartite matching
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Beating the 1/e Bound

I Corollary: Cannot do better than 1/e with o(n) samples

I How to use Ω(n) samples to improve competitive ratio?

I Approach 1 : Use multiple samples to generate independence
between some suitable set of events

I Approach 2 : Use samples to approximate statistics used by the
full information algorithm
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Beating the 1/e Bound

I Corollary: Cannot do better than 1/e with o(n) samples

I How to use Ω(n) samples to improve competitive ratio?

I Approach 1 : Use multiple samples to generate independence
between some suitable set of events

I Approach 2 : Use samples to approximate statistics used by the
full information algorithm

I Used by Runinstein et al [RWW20] to show a comptetive ratio of
0.745− ε using Oε(n) samples

E.Arunachaleswaran Prophet Inequalities with Limited Information 135



Outline of Talk

Introduction

The Single Choice Problem
Upper Bound
1/2-Competitive Strategy

Beyond Single Choice : A Connection between Prophets and Secretaries
The Secretary Problem
Reducing Prophets to Secretaries

Unknown IID Prophet Inequalities
A 1/e Upper Bound
Beating the 1/e Bound

Conclusion and Open Problems

E.Arunachaleswaran Prophet Inequalities with Limited Information 136



Conclusion

I Many prophet problems can be solved with a single sample, or a few
samples from each distribution
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Conclusion

I Many prophet problems can be solved with a single sample, or a few
samples from each distribution

I Competitive ratios of these algorithms often match that of the full
information algorithms
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Conclusion

I Many prophet problems can be solved with a single sample, or a few
samples from each distribution

I Competitive ratios of these algorithms often match that of the full
information algorithms

I Also give simpler algorithms for the full information setting
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Open Problems

I Gap between best competitive ratio for full information versus single
sample for the matroid problem : 1/2 versus O(log log(rank))
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Open Problems

I Gap between best competitive ratio for full information versus single
sample for the matroid problem : 1/2 versus O(log log(rank))

I Want an exact ratio for Single Sample k-choice, the single sample

algorithm’s ratio is 1−O
(

1√
k

)
, while the full information algorithm

is 1− 1√
k+3
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Open Problems

I Gap between best competitive ratio for full information versus single
sample for the matroid problem : 1/2 versus O(log log(rank))

I Want an exact ratio for Single Sample k-choice, the single sample

algorithm’s ratio is 1−O
(

1√
k

)
, while the full information algorithm

is 1− 1√
k+3

I Want to know the best possible ratio for the IID prophet problem
with n samples (gap between 0.632 algorithm and 0.745 upper
bound)
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Open Problems

I Gap between best competitive ratio for full information versus single
sample for the matroid problem : 1/2 versus O(log log(rank))

I Want an exact ratio for Single Sample k-choice, the single sample

algorithm’s ratio is 1−O
(

1√
k

)
, while the full information algorithm

is 1− 1√
k+3

I Want to know the best possible ratio for the IID prophet problem
with n samples (gap between 0.648 algorithm and 0.745 upper
bound)

I Unknown IID Prophet Inequalities beyond the single choice problem

E.Arunachaleswaran Prophet Inequalities with Limited Information 143



Open Problems

Thanks!
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